A hybridized finite element method for the Stokes problem
نویسندگان
چکیده
منابع مشابه
A Hybrid Mortar Finite Element Method for the Stokes Problem
In this paper, we consider the discretization of the Stokes problem on domain partitions with non-matching meshes. We propose a hybrid mortar method, which is motivated by a variational characterization of solutions of the corresponding interface problem. For the discretization of the subdomain problems, we utilize standard inf-sup stable finite element pairs. The introduction of additional unk...
متن کاملAn Optimal Adaptive Finite Element Method for the Stokes Problem
A new adaptive finite element method for solving the Stokes equations is developed, which is shown to converge with the best possible rate. The method consists of 3 nested loops. The outermost loop consists of an adaptive finite element method for solving the pressure from the (elliptic) Schur complement system that arises by eliminating the velocity. Each of the arising finite element problems...
متن کاملAn Absolutely Stabilized Finite Element Method for the Stokes Problem
An absolutely stabilized finite element formulation for the Stokes problem is presented in this paper. This new formulation, which is nonsymmetric but stable without employment of any stability constant, can be regarded as a modification of the formulation proposed recently by Hughes and Franca in [8]. Optimal error estimates in L2-norm for the new stabilized finite element approximation of bot...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملA stabilized finite element method for the Stokes problem based on polynomial pressure projections
A new stabilized finite element method for the Stokes problem is presented. The method is obtained by modification of the mixed variational equation by using local L polynomial pressure projections. Our stabilization approach is motivated by the inherent inconsistency of equal-order approximations for the Stokes equations, which leads to an unstable mixed finite element method. Application of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2014
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2014.08.005